

## STRUCTURAL STUDIES BY NUCLEAR MAGNETIC RESONANCE—XVI CONFORMATIONS AND CONFIGURATIONS OF HYDRAZONES<sup>1</sup>

G. J. KARABATSOS and C. E. OSBORNE

Department of Chemistry, Michigan State University, East Lansing, Michigan

(Received in USA 21 September 1967; accepted for publication 6 November 1967)

**Abstract**—Conformations and configurations were assigned to several hydrazones of aldehydes and ketones from analysis of their 60-Mc NMR spectra. Azines and hydrazone dimers were found to be frequent contaminants of the hydrazones, especially after the hydrazones, or their solutions, were let stand at room temperature. From the vicinal spin-spin coupling constants,  $J_{H_1H_2}$ , the following conclusions were reached regarding the relative stabilities of rotamers I and II: (a)  $\Delta G^\circ_{40}$  for  $V_1 \rightleftharpoons V_2$  was +400, +500 and +700 cal/mole for R equal to methyl, isopropyl and phenyl, respectively. (b)  $\Delta G^\circ_{40}$  for  $VII \rightleftharpoons VIIIa$  was +200, +600 and +700 cal/mole for R equal to methyl, ethyl and isopropyl, respectively. Interpretation of the spin-spin coupling constants of the *trans* isomers (amino group *trans* to  $H_1$ ) led to the conclusion that, whereas IX is the only significant rotamer of  $\alpha,\alpha$ -disubstituted acetaldehyde hydrazones, both X and XI—with a low barrier of interconversion between them—are significant rotamers of the  $\alpha$ -monosubstituted compounds.

IN PREVIOUS publications we have commented on the problems of configurational isomerism about the C=N double bond and on the relative stabilities of rotamers I and II, when X is Me and Y is Ph;<sup>2</sup> when X is Ph and Y is H;<sup>3</sup> and when X is a substituted Ph,<sup>4,5</sup> a carbamido<sup>5</sup> or a thiocarbamido group.<sup>5</sup> In this paper we wish to



discuss the results obtained from our investigations of hydrazones (X = H and Y = Me).

### RESULTS

The chemical shifts, whose accuracy is about  $\pm 0.03$  ppm, of a few representative hydrazones of aldehydes and ketones are summarized in Table 1. The notation used to distinguish the various protons is shown in III.

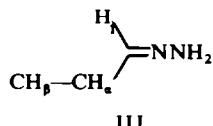
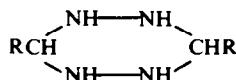



TABLE I. CHEMICAL SHIFTS\* ( $\tau$ -VALUES) OF HYDRAZONES

| $R_1$  | $R_2=C=NNH_2$   | Solvent           | $H_1$<br>cis | $H_1$<br>trans | $H_4(CH)$<br>cis | $H_4(CH_2)$<br>trans | $H_4(CH_3)$<br>cis | $H_4(CH_3)$<br>trans |
|--------|-----------------|-------------------|--------------|----------------|------------------|----------------------|--------------------|----------------------|
| H      | $CH_3$          | Neat              | 2.88         | 3.42           |                  |                      | 8.32               | 8.23                 |
| H      | $CH_3$          | $C_6H_6$          |              |                |                  |                      | 8.77               | 8.39                 |
| H      | $CH_2CH_3$      | Neat              | 2.93         | 3.61           |                  | 7.92                 |                    |                      |
| H      | $CH_2C_6H_5$    | Neat              | 3.02         | 3.40           |                  | 6.63                 |                    |                      |
| H      | $CH_2C_6H_3$    | $CCl_4$           | 2.96         |                |                  | 6.35                 | 6.55               |                      |
| H      | $CH_2C(CH_3)_3$ | Neat <sup>b</sup> | 2.85         | 3.45           |                  | 7.99                 |                    |                      |
| H      | $CH(CH_3)_2$    | Neat              | 2.97         | 3.75           | 6.94             | 7.67                 |                    |                      |
| H      | $CH(CH_3)_2$    | $C_6H_6$          | 3.40         |                |                  |                      |                    |                      |
| $CH_3$ |                 | Neat              |              |                |                  |                      | 8.35               | 8.20                 |
| $CH_3$ |                 | $CCl_4$           |              |                |                  |                      | 8.33               | 8.18                 |
| $CH_3$ |                 | $C_6H_6$          |              |                |                  |                      | 8.64               | 8.22                 |
| $CH_3$ | $CH_2CH_3$      | Neat              |              |                |                  |                      | 8.34               | 8.21                 |
| $CH_3$ | $CH_2CH_3$      | $CCl_4$           |              |                |                  | 7.84                 | 7.87               | 8.92                 |
| $CH_3$ | $CH_2CH_3$      | $C_6H_6$          |              |                |                  | 7.85                 | 8.34               | 8.21                 |
| $CH_3$ | $CH_2CH_3$      | Neat              |              |                |                  |                      | 7.92               | 8.67                 |
| $CH_3$ | $CH_2C_6H_5$    | $CCl_4$           |              |                |                  |                      | 6.56               | 8.47                 |
| $CH_3$ | $CH_2C_6H_3$    | $C_6H_6$          |              |                |                  |                      | 6.55               | 6.61                 |
| $CH_3$ | $CH_2C_6H_3$    | Neat              |              |                |                  |                      | 6.84               | 8.45                 |
| $CH_3$ | $CH_2C_6H_3$    | $C_6H_6$          |              |                |                  |                      | 6.88               | 8.18                 |
| $CH_3$ | $CH_2C_6H_3$    | Neat              |              |                |                  |                      | 6.83               | 8.22                 |
| $CH_3$ | $CH(CH_3)_2$    | $CCl_4$           |              |                |                  |                      | 7.61               | 8.38                 |
| $CH_3$ | $CH(CH_3)_2$    | $C_6H_6$          |              |                |                  |                      | 7.61               | 8.37                 |
| $CH_3$ | $CH(CH_3)_2$    | Neat              |              |                |                  |                      | 7.62               | 8.28                 |
| $CH_3$ | $C(CH_3)_3$     | $CCl_4$           |              |                |                  |                      | 8.32               | 8.65                 |
| $CH_3$ | $C(CH_3)_3$     | $C_6H_6$          |              |                |                  |                      | 8.34               | 8.28                 |
| $CH_3$ | $C(CH_3)_3$     | Neat              |              |                |                  |                      | 8.63               | 9.21                 |
|        |                 |                   |              |                |                  |                      |                    | 8.93                 |
|        |                 |                   |              |                |                  |                      |                    | 8.93                 |


\* The contamination of the hydrazones with azines and hydrazone dimers prevented accurate determination of several resonances. For this reason many chemical shifts are not reported in this Table.

<sup>b</sup> Some ethanol present.

Each proton is referred to as *cis* or *trans* with respect to the amino group, with assignments being made on the basis of arguments given in our previous publications.

The chemical shifts are typical of compounds of the general structure  $R_1R_2C\equiv NZ$ . For example,  $H_1$  resonates at lower fields when *cis* than when *trans* to the amino group; and *cis*  $\alpha$ -methyl protons resonate at higher magnetic fields than *trans*  $\alpha$ -methyl protons. As in compounds where  $X$  is hydrogen, benzene shifts the resonances of the *cis* groups to appreciably higher magnetic fields than it does those of the corresponding *trans* groups.

The spectra of freshly prepared neat liquid hydrazones, or of their solutions, are usually uncontaminated by the resonance signals of azines ( $H_1$  of azines at  $\tau$  about 2.2) or, as in the case of aldehyde hydrazones, of the dimers<sup>6</sup> of hydrazones, IV. The



IV

signals of the above mentioned species, however, often become strong within a few hours. Figure 1 shows the spectrum of a mixture of acetaldehyde hydrazone and its dimer.

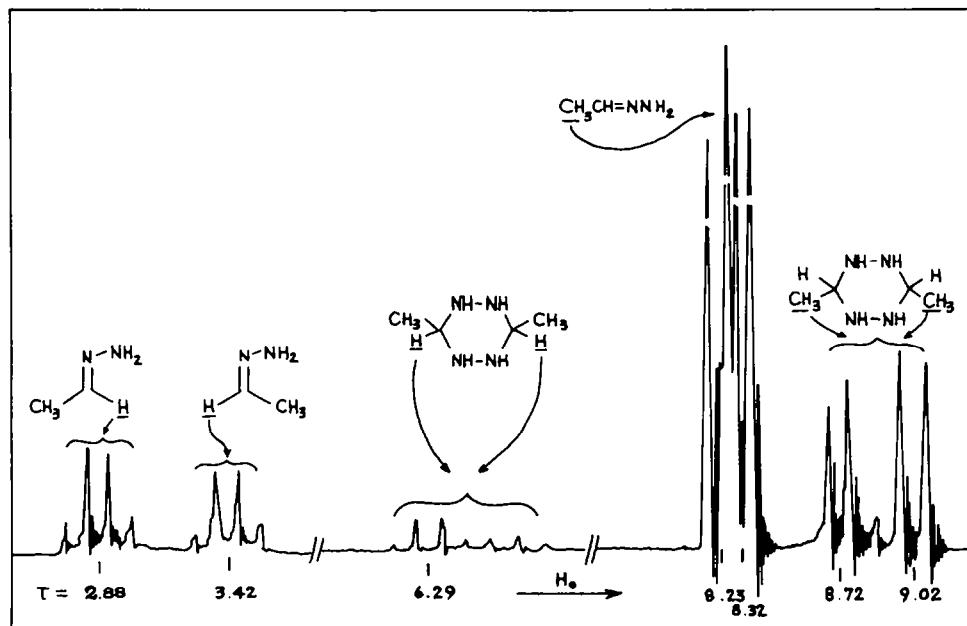



FIG. 1 NMR spectrum of acetaldehyde hydrazone and its dimer.

In Table 2 we have summarized the *syn* and *anti* isomer percentages, whose accuracy is about  $\pm 5\%$ , and the free energy differences between these isomers. In

TABLE 2. *syn* AND *anti* PERCENTAGES AND  $\Delta G^\circ_{40}$  VALUES FOR *syn*  $\rightleftharpoons$  *anti* OF HYDRAZONES<sup>a</sup>

| $R_1$           | $R_2C=NNH_2$                                      | % <i>syn</i> <sup>b</sup> | % <i>anti</i> | $\Delta G^\circ_{40}$<br>(Kcal/mole) |
|-----------------|---------------------------------------------------|---------------------------|---------------|--------------------------------------|
| H               | CH <sub>3</sub>                                   | 51                        | 49            | +0.04                                |
| H               | CH <sub>2</sub> CH <sub>3</sub>                   | 64                        | 36            | 0.35                                 |
| H               | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>     | 62                        | 38            | 0.31                                 |
| H               | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | 64                        | 36            | 0.35                                 |
| H               | CH <sub>2</sub> C(CH <sub>3</sub> ) <sub>3</sub>  | 73                        | 27            | 0.61                                 |
| H               | CH(CH <sub>3</sub> ) <sub>2</sub>                 | 91                        | 9             | 1.41                                 |
| H               | CH(Et) <sub>2</sub>                               | 87                        | 13            | 1.2                                  |
| H               | CH( <i>i</i> -Pr) <sub>2</sub>                    | 84                        | 16            | 1.0                                  |
| CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                   | 78                        | 22            | 0.78                                 |
| CH <sub>3</sub> | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>     | 79                        | 21            | 0.80                                 |
| CH <sub>3</sub> | CH(CH <sub>3</sub> ) <sub>2</sub>                 | 93                        | 7             | 1.58                                 |
| CH <sub>3</sub> | C(CH <sub>3</sub> ) <sub>3</sub>                  | 100                       | 0             | >2.7                                 |

<sup>a</sup> Data from neat liquids.<sup>b</sup> *syn* is the isomer having the amino group *cis* to R<sub>1</sub>.

all cases the predominant isomer is that in which the amino group is *cis* to the smaller group.

In Table 3 are summarized the vicinal spin-spin coupling constants, whose accuracy is about  $\pm 0.03$  c/s, between H<sub>1</sub> and H<sub>a</sub>. These coupling constants are again typical of hydrazone-type compounds. For example, the coupling constants of the *syn* isomers increase as R increases in size; those of the *anti* monosubstituted acetaldehyde hydrazones behave irregularly; and those of the *anti* disubstituted acetaldehyde hydrazones are appreciably larger than all others.

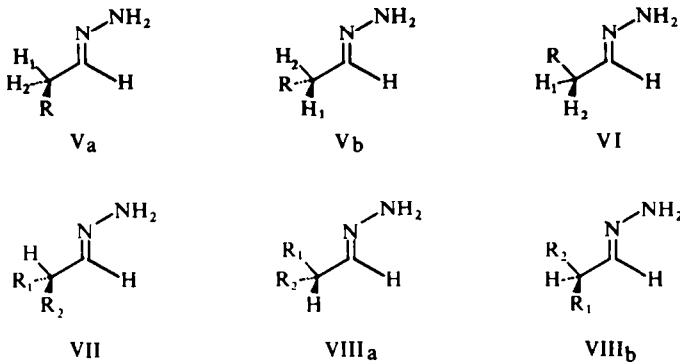

*Conformations of the syn isomers.* The instability of the hydrazones prevented us

TABLE 3. SPIN-SPIN COUPLING CONSTANTS OF ALDEHYDE HYDRAZONES<sup>a</sup> AT 40°

| $R_1$ | $R_2$                                                         | $J_{H_1H_a}$ (c/s) | <i>syn</i> <sup>b</sup> isomer | <i>anti</i> isomer |
|-------|---------------------------------------------------------------|--------------------|--------------------------------|--------------------|
| H     | CH <sub>3</sub>                                               | 5.40               | 5.50                           |                    |
| H     | CH <sub>2</sub> CH <sub>3</sub>                               | 5.52               | 5.45                           |                    |
| H     | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>             | 5.60               | 4.93                           |                    |
| H     | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                 | 5.77               | 5.07                           |                    |
| H     | CH <sub>2</sub> C(CH <sub>3</sub> ) <sub>3</sub> <sup>c</sup> | 6.23               | 5.35                           |                    |
| H     | CH(CH <sub>3</sub> ) <sub>2</sub>                             | 5.18               | 7.18                           |                    |
| H     | CH(Et) <sub>2</sub>                                           | 6.32               | 8.10                           |                    |
| H     | CH( <i>i</i> -Pr) <sub>2</sub>                                | 6.58               | 8.43                           |                    |

<sup>a</sup> Data from neat liquids. <sup>b</sup> *syn* is the isomer having the amino group *cis* to H<sub>1</sub>. <sup>c</sup> Contaminated by ethanol.

from studying the behavior of the coupling constants  $J_{H_1H_2}$  as a function of temperature, and, consequently, the only parameters that can be obtained on the relative stabilities of rotamers V vs. VI and VII vs. VIII is the free energy difference  $\Delta G^\circ$ , between them.



Eqs (1) and (2) express the relevant free energy differences, where  $J_t$  is the *trans* coupling,  $J_g$  is the *gauche*, and  $J_{obs}$  is the experimentally

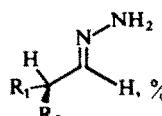
$$\Delta G^\circ_{V_a \neq VI} = -RT \ln (J_t + J_g - 2J_{obs})/(J_{obs} - J_g) \quad (1)$$

$$\Delta G^\circ_{VII \neq VIII_a} = -RT \ln \frac{1}{2} (J_t - J_{obs})/(J_{obs} - J_g) \quad (2)$$

observed averaged coupling constant.  $J_t$  and  $J_g$  can be evaluated from Eqs (3) and (4), where equation (3) expresses the coupling of

$$J_{obs} (\text{acet.}) = \frac{1}{3} (J_t + 2J_g) \quad (3)$$

$$J_{obs} (\text{t-Bu}) + 0.4 = \frac{1}{2} (J_t + J_g) \quad (4)$$

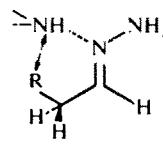

acetaldehyde hydrazone and Eq. (4) that of t-butylacetaldehyde hydrazone. The reasonable assumption is again made<sup>2,7</sup> that t-butylacetaldehyde hydrazone exists mainly in conformation V. The 0.4 term in Eq. (4) is the alkyl correction term.<sup>7,8</sup> The calculated values,  $J_t = 10.0$  c/s and  $J_g = 3.0$  c/s, compare favorably with those calculated for analogous systems.<sup>2,7</sup> In Table 4 are summarized the free energy differences between various rotamers and the relative populations of these rotamers as calculated from Eqs (5) and (6), where  $p$  is the population of V and of VII and  $(1 - p)$  that of VII and of VIII.

$$J_{obs} = p(J_t + J_g)/2 + (1 - p) J_g \quad (5)$$

$$J_{obs} = pJ_t + (1 - p) J_g \quad (6)$$

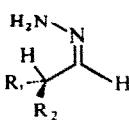

The  $\Delta G^\circ$  values presented in Table 4 are certainly comparable to those obtained for structurally similar compounds.<sup>2,7,9</sup> They may, however, be somewhat more positive than the true  $\Delta G^\circ$  values for the unassociated hydrazones. The rationale behind this statement is as follows: Consider V and VI and the corresponding hydrogen bonded species IX and X. The observed  $J_{H_1H_2}$  coupling constants, from which the  $\Delta G^\circ$  values are calculated, are weighted averages of all the  $J_{H_1H_2}$  coupling

TABLE 4. ROTAMER POPULATIONS<sup>a</sup> AND  $\Delta G^\circ$  VALUES OF HYDRAZONES

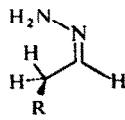

| $R_1 R_2 C=NNH_2$                 |  | %, %             | $\Delta G^\circ_{40}$ for $V_a \rightleftharpoons VI$<br>(cal/mole) |
|-----------------------------------|-----------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------|
| $R_1$                             | $R_2$                                                                             |                  |                                                                     |
| H                                 | CH <sub>3</sub>                                                                   | 80               | + 400                                                               |
| H                                 | CH(CH <sub>3</sub> ) <sub>2</sub>                                                 | 83               | + 500                                                               |
| H                                 | C <sub>6</sub> H <sub>5</sub>                                                     | 87               | + 700                                                               |
| H                                 | C(CH <sub>3</sub> ) <sub>3</sub>                                                  | 100 <sup>b</sup> | > + 3,000 <sup>b</sup>                                              |
|                                   |                                                                                   |                  | $\Delta G^\circ_{40}$ for $VII \rightleftharpoons VIIa$             |
| CH <sub>3</sub>                   | CH <sub>3</sub>                                                                   | 40               | + 200                                                               |
| CH <sub>2</sub> CH <sub>3</sub>   | CH <sub>2</sub> CH <sub>3</sub>                                                   | 56               | + 600                                                               |
| CH(CH <sub>3</sub> ) <sub>2</sub> | CH(CH <sub>3</sub> ) <sub>2</sub>                                                 | 60               | + 700                                                               |

<sup>a</sup> Calculated at 40°. <sup>b</sup> Value was assumed.

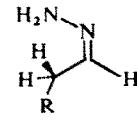
constants of the various species present in solution. As a result of stronger non-bonded repulsions ( $R \leftrightarrow H$ ) in X than in IX ( $H \leftrightarrow H$ ), the ratio IX/X ought to be larger than the ratio V/VI of the unassociated species. The greater the concentration of the hydrogen bonded species, the more positive, therefore, the  $\Delta G^\circ$  is.




IX




X

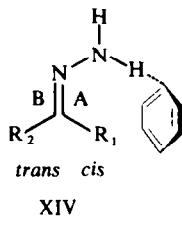

*Conformations of the anti isomers.* From the parallel behavior between the  $J_{H_1 H_2}$  of the *anti* isomers of hydrazones and those of analogous compounds<sup>7,9</sup> we can draw conclusions on the conformations of the *anti* isomers that are similar to those previously drawn. Namely, that the most stable conformation of the disubstituted acetaldehyde hydrazones is XI; and that XII and XIII are reasonably accurate



XI

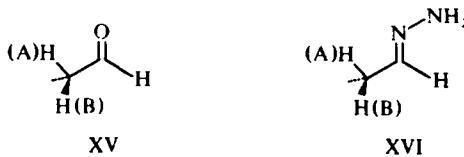


XII




XIII

representations of the minimum energy conformations of the monosubstituted acetaldehyde hydrazones. Again, the irregular behavior of  $J_{H_1 H_2}$  of the mono-substituted derivatives suggests that the barrier to interconversion between XII and XIII is probably low.<sup>9</sup>


*Chemical shifts and solvent effects.* The larger upfield shift of the *cis* over the *trans* protons on dilution with benzene (Table 1) suggests specific orientation of benzene

by interaction with the hydrazone. A weakly bonded complex, XIV, that has been suggested for similar compounds,<sup>3,4</sup> adequately accommodates the data. For example, as a consequence of its being closer to the ring center, the *cis* group R<sub>1</sub> is



more strongly shielded than the *trans* group R<sub>2</sub>. As in so many other compounds of the general structure R<sub>1</sub>R<sub>2</sub>C=NZ, region A is deshielded with respect to B (both A and B in the plane of the molecule). This conclusion is strongly supported by the lower field absorption of *cis*-H<sub>1</sub> over *trans*-H<sub>1</sub> (about 0.5 ppm) of *cis*  $\alpha$ -methine over *trans*  $\alpha$ -methine (about 0.8 ppm).

Recently it was pointed out<sup>10</sup> that position A (XV), in the plane of the carbonyl, is shielded, rather than deshielded, with respect to position B (XV). It is of interest to note that the same is true in hydrazones, i.e. position A (XVI), in the plane of the



carbon-nitrogen double bond, is also shielded with respect to position B (XVI) that is outside the plane. For example, whereas the *trans*  $\alpha$ -methylene of propionaldehyde hydrazone resonates at  $\tau = 7.92$ , that of the *t*-butylacetaldehyde hydrazone, which spends more time in position A, resonates at  $\tau = 7.99$  (higher). Similarly, whereas the *trans*  $\alpha$ -methine of dimethylacetaldehyde hydrazone resonates  $\tau = 7.67$ , that of diethylacetaldehyde hydrazone resonates at  $\tau$  about 8.05. Analogous results were observed with the oxime O-methyl ethers,<sup>7</sup> oximes,<sup>9</sup> and N-methylphenylhydrazones.<sup>2</sup> In this respect, therefore, the anisotropic effect of the carbon-nitrogen double bond parallels that of the carbonyl group.

## EXPERIMENTAL

*Preparation of hydrazones.* The following is a typical preparation of a hydrazone. About 4 g (0.08 mole) 100% hydrazine hydrate, 5 ml EtOH and 15.3 g (0.10 mole) BaO were placed in a 100 ml round-bottomed flask and cooled to 0°. To the magnetically stirred soln was added, over a period of a  $\frac{1}{2}$  hr, a soln of 4.53 g (0.08 mole) acetone in 5 ml EtOH. After the addition was completed, the reaction mixture was stirred for an additional 10 min. The reaction mixture was then cooled, shaken with added ether, and distilled under vacuum. The above procedure was used for the preparation of all other hydrazones. In general, the reaction time required for the preparation of the other ketone hydrazones was longer. For example, stirring was continued for 3 hr at room temp.

NMR spectra were determined at 60-Mc on a Model A-60 spectrometer (Varian Associates, Palo Alto, Calif.). Undegassed solns were used with TMS as internal reference standard.

## REFERENCES

- <sup>1</sup> From the M. S. Thesis of C. E. Osborne, Michigan State University, 1964.
- <sup>2</sup> G. J. Karabatsos and K. L. Krumel, *Tetrahedron* **23**, 1097 (1967).
- <sup>3</sup> G. J. Karabatsos and R. A. Taller, *J. Am. Chem. Soc.* **85**, 3624 (1963).
- <sup>4</sup> G. J. Karabatsos, B. L. Shapiro, F. M. Vane, J. S. Fleming and J. S. Ratka, *Ibid.* **85**, 2784 (1963).
- <sup>5</sup> G. J. Karabatsos, F. M. Vane, R. A. Taller and N. Hsi, *Ibid.* **86**, 3356 (1964).
- <sup>6</sup> Th. Kauffman, G. Ruckelhauss and J. Schulz, *Angew. Chem.* **3**, 63 (1964).
- <sup>7</sup> G. J. Karabatsos and N. Hsi, *Tetrahedron* **23**, 1079 (1967).
- <sup>8</sup> G. J. Karabatsos and N. Hsi, *J. Am. Chem. Soc.* **87**, 2864 (1965).
- <sup>9</sup> G. J. Karabatsos and R. A. Taller, *Tetrahedron* **24**, 3347 (1968).
- <sup>10</sup> G. J. Karabatsos, G. C. Sonnichsen, N. Hsi and D. J. Fenoglio, *J. Am. Chem. Soc.* **89**, 5067 (1967).